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The problem considered is the diffusion of a passive scalar in a ‘fluid’ in random 
motion when the fluid veldcity field is Gaussian and statistically homogeneous, 
isotropic and stationary. A self-consistent expansion for the effective long-time 
diffusivity is obtained and the approximations derived from this series by retaining 
up to three terms are explicitly calculated for simple idealized forms of the velocity 
correlation function for which numerical simulations are available for comparison for 
zero molecular diffusivity. The dependence of the effective diffusivity on the molecular 
diffusivity is determined within this idealization. The results support Saffman’s 
contention that the molecular and turbulent diffusion processes interfere destructively, 
in the sense that the total effective diffusivity about a fixed point is less than that 
which would be obtained if the two diffusion processes acted independently. 

1. Introduction 
In his fundamenta1 paper ‘Diffusion by continuous movements ’ ( 1921) Taylor 

pointed out that the long-time diffusion of a passive scalar field in a fluid in homo- 
geneous, isotropic and stationary random motion should be described by the simple 
diffusion equation. His argument may be summarized as follows. The displacement 
of a typical particle is the vector sum of its displacements in the subintervals into 
which the time interval may be divided. If the subintervals are large in number and 
each of a duration long compared with the correlation time or eddy circulation time 
then the displacements in different subintervals are ‘almost’ independent and it is 
likely that their sum will have a Gaussian distribution. &though a rigorous derivation 
of this result has not yet been given there is little doubt that it is essentially correct. 
Computer simulations of diffusion in a given Gaussian velocity field (Kraichnan 
1970a) confirm Taylor’s predictions except in the case of two-dimensional time- 
independent flow. Taylor’s analysis leads also to an expression for the effective long- 
time diffusivity in terms of the integrated Lagrangian velocity correlation function. 
The problem of relating the Lagrangian to the Eulerian velocity correlation function 
has received much attention and several approximation procedures have been 
proposed which lead to good agreement with Kraichnan’s computer simulations in 
many cases (Kraichnan 1970a,b; Phythian 1975; Lundgren & Pointin 1976). The 
effective long-time diffusivity may therefore be calculated with reasonable accuracy 
in such models. 

The generalization of Taylor’s work to the case in which the molecular diffusivity 
is non-zero has been carried out by Saffman (1960). An interesting question which 
arises concerns the way in which the molecular and turbulent diffusivities combine to 
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give an effective value. Taylor suggested that the two were simply additive, Townsend 
argued that ‘constructive interference’ would occur (Batchelor & Townsend 1956), 
while Saffman has given strong reasons for believing that ‘ destructive interference ’ 
takes place (Seffman 1960; see also Batchelor, Howells & Townsend 1959). Un- 
fortunately the simple approximations mentioned above for the case of zero molecular 
diffusivity are difficult to generalize to non-zero values of this parameter. More 
complicated theories exist. For example the direct-interaction and Lagrangian-history 
direct-interaction approximations developed for the full turbulence problem may 
also be formulated for the Gaussian flow model considered here. No detailed cal- 
culations have been carried out for non-zero molecular diffusivity but a qualitative 
argument based on these theories supports Saffman’s view (Kraichnan 1965). [The 
term direct interaction will be used in this paper to denote the formulation of that 
approximation for the diffusion of a passive scalar by a fluid whose velocity field has 
prescribed statistics.] 

In  the present paper we should like to explore an alternative approach to the cal- 
culation of effective diffusivity. The method has something in common with direct 
interaction in that it is derived from a perturbation expansion for the ‘propagator’ 
(the averaged Green’s function of the equation of the scalar field). However, whereas 
direct interaction follows from the truncation of a series in which the full propagator 
is determined self-consistently (this term will be explained below), the series con- 
sidered here involves a self-consistency requirement only on the propagator’s asymp- 
totic form for large time differences. Since Taylor’s argument tells us that this 
asymptotic form is determined by a single parameter, the effective diffusivity, the 
procedure leads to a self-consistent expansion for this quantity. Such series, to which 
the terms ‘consolidated’ and ‘renormalized’ are also applied, have been used exten- 
sively in many branches of physics. (For a discussion see Martin, Siggia & Rose 1973.) 
They have the property that the unknown quantity, in this case the effective diffu- 
sivity, is expressed as an infinite series of terms which themselves involve the un- 
known quantity. The self-consistency condition is comparatively simple for the 
series derived here and higher-order terms can be found by evaluating Feynman-type 
integrals. 

We have found that if a suitable special choice of the velocity-field correlation 
function is made it is possible to evaluate terms up to sixth. order in the perturbation 
series without undue difficulty. Successive approximations for the effective diffusivity, 
as a function of the molecular diffusivity K ,  obtained in this way appear to be con- 
verging and are consistent with Kraichnan’s exact values for K = 0. The results are 
given for time-dependent and ‘frozen’ (i.e. time-independent) velocity fields, and 
clearly show that destructive interference of turbulent and molecular diffusion takes 
place. Rather strangely, it  appears that the convergence is more rapid for the frozen- 
field case, which is usually regarded as the most stringent test of approximation 
schemes. The method is exact for the two trivially soluble cases of uniform velocity 
fields and velocity fields with delta-function time correlatiom. 

The introduction of renormalized perturbation series into turbulence theory has 
proved very fruitful (for a recent review see Kraichnan 1975). However very little 
is known about the convergence or asymptotic nature of such series. Rigorous conver- 
gence proofs seem to be lacking and the numerical calculation of terms beyond the 
lowest order poses severe computational problems. Investigation has therefore been 
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largely confined to examining such series for simple models such as the anharmonic 
oscillator (Morton & Corrsin 1970) and convection by a uniform velocity field 
(Kraichnan 1964). The work reported here extends these ideas to less simple models 
(although they are still simple by comparison with real fluid flow) and may therefore 
help to shed some further light on this approach. 

2. Renormalized series for effective diffusivity 
The basic equation of the problem may be written 

( 1 )  
a (; - K.2) q x ,  t ;  x’, t ’ )  = 6(x - x’)  6(t - t’) - &(x, t )  - q x ,  t ;  x‘, t ‘), 

’Xa 

where K is the molecular diffusivity and U(x,t) is the Eulerian velocity field of a 
realization of the random flow. The quantity 9 ( x 7  t ;  x’, t ‘ ) ,  which is required to vanish 
for t < t’, is the causal Green’s function of the problem. It enables one to calculate, 
for a particular realization of U, -the scalar field arising from a source distribution 
s(x, t )  by means of the expression Idr’Idt‘b(x,  t ;  x‘,  ~ ’ ) s ( x ’ ,  t’). It should be noted 
that ’3 is a random function because of its dependence on U. 

The random velocity field U ( x ,  t )  is assumed to be solenoidal, Gaussian and statistic- 
ally homogeneous, isotropic and stationary with a correlation function given by 

(&(x,  t )  Up(X’, t ’ ) )  = Rap(x - x‘, t -  t ’ ) .  

It is often convenient to work with the Fourier transform 

Rap(k, t )  = dxRap(x, t )  ecik.=, s 
which, because of the incompressibility and isotropy conditions, has the form 

RapCk, t )  = ( a a p - k a  kF/k2)f i (k ,  t ) .  

The average of 3 over all realizations of the flow is denoted by G and will be referred 
to as the propagator. Because of the homogeneous and stationary nature of the 
probability distribution of U it is seen that G is a function of x - x‘ and t - t ‘ :  

G ( x  - x’ ,  t -  t ‘ )  = ( B ( x ,  t ;  x‘,  t ’)). 

It is clear that G enables one to calculate the mean value of the scalar field, a t  any 
position and time, arising from a non-random source function s by means of the 
integral I dx‘ I dt‘G(x - x‘, t - t ’ )  ~ ( x ’ ,  t’). Thus G describes what ib usually referred to as 
the single-point diffusion problem. Multiple-point diffusion, which may be described 
by averages of products of 3 functions, will not be considered here. 

A formal series solution for 3 may be generated from ( 1 )  by treating the term 
(U . V )  9 as a perturbation. Averaging over U then gives a series for G .  However such 
a ‘bare’ perturbation expansion is of little value and the terms may not even be well 
defined if K is zero. We shall therefore consider instead a renormalized series. A rough 
argument which describes the basic philosophy behind this approach proceeds as 
follows. Since Taylor’s work shows that the average effect of the convection term 
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FIGURE 2 

(U. V) 8 is to increase the effective diffusivity, it seems sensible to replace K by a 
larger value and to subtract compensating terms from (U . V) 8, treating the difference 
as a perturbation. Since this new perturbation consists of the convection term with 
some of its effect subtracted out it will be smaller, in some sense, and hopefully the 
corresponding perturbation series will converge more rapidly than the bare series. 

The renormalized series may be obtained by a rearrangement of the bare series but 
for our purpose it is more convenient to adopt a slightly different approach. We 
consider an equation containing a parameter A : 

(a/at-yv2)8(x,t;x’,t’) = 6(x-x’)S(t-t’)+(A2y2+A4y4+ ...) 028(x,t;x’,t’) 

(2) 

where y++2+p4+... = K (3) 

+ hU,(x, t )  a”(,, t ;  x’, t’)/8xa, 

and the y, are, a t  this stage, arbitrary. For A = - 1 this equation reduces to (1) while 
for A = 0 it becomes 

(a/at-yV) 8(x,t;x’,t’) = S(x-x’)6(t-t’), 

the causal solution of which will be denoted by g(x - x’, t - t’). Rewriting (2) as an 
integral equation gives 

8 ( X , t ; X ’ , t ‘ )  = g(x-X’,t-t‘)+ dy d7g(x-y,t-7)(A2~2+A4yp+ ...) 

a 
s s  
s s  aY, 

x V i  ”(y, 7 ;  x’, t’) + A  d y  d7g(x - y, t - 7 )  V,(y, 7 )  - S(y ,  7 ;  x’, t ’), (4) 

from which 8 may be obtained as a power series in A. As usual the terms of the series 
are most conveniently represented by diagrams. If we adopt the definitions given in 
figure 1 then ’Y(x,t;x’,t’) is represented by the series shown in figure 2. The line 
ending on the left of each diagram is understood to be at the space-time point (x, t )  
and that on the right a t  (x’,t’). An integration over all intermediate positions and 
times is implied. 

Taking the average over U and making use of its Gaussian property gives for 
G(x-x’, t - t ‘ )  the series shown in figure 3, where a broken line indicates that the 
two U’s connected by it are replaced by the corresponding correlation function (see, 
for example, Phythian 1972). A quantity X is defined by the sum of all the diagrams 
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FIGURE 3 

FIGURE 4 

which cannot be separated into two disconnected parts by severing a single internal 
g line. Z is analogous to the self-energy in quantum theory but a more appropriate 
term in the present context would be the generalized diffusivity (for a discussion see 
Kraichnan 1970b). Z(x  - x‘, t - t ’ )  is then given by the series shown in figure 4 and 
G’ is related to Z by the equation 

G(x-x’ , t - t ’ )  = g(x-X‘, t - t ’ )+ dy d7 dy’ d ~ ’ g ( x - y , t - ~ )  s s s  s 

s 
x Z(Y-y’,7-7’)G(Y’-X’,7’-t’). (5) 

This may be rewritten in terms of Fourier transforms as 

(a /a t  +pk2)  Q(k, t - t ’ )  = d ( t -  t ’ )  + dTZ(k, t -7)G(k, 7 - t ’ ) .  (6) 

If Taylor’s argument is correct then, for time intervals large compared with the eddy 
circulation time and wavenumbers small compared with the inverse length scale of 
the turbulence, we have O( k, t - t ’ )  w exp { - ak2(t - t’)}, 

where the constant v describes the large-scale diffusion, relative to a fixed point, due 
to the combined effect of molecular and turbulent motion. 

Considering (6) for large t - t‘ and small k ,  using the above asymptotic form for 0, 
and assuming that 2 falls off sufficiently rapidly for large time differences for the 
following integral to exist (which can be verified a t  each order of the perturbation 
series), we find for small k 

(p  - a) k2 = 1;- d7 %(k, 7 )  exp (ak27). 
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k - 
I t‘ 

k 

represents exp [ - l k * ( t - t ’ ) ]  e ( t -1 ’ )  

I 0 t f  

.*-* f 

represents -p,,X26 ( I - t ‘ )  P ...-*..* 
0. 

k/ L k,  represents 1 2 ~ ~ h j ~ z , , ( p .  p t ’ )  

t t c  

FIUIJRX 6 

* ........ 
t . 

k k 

0.’ .=.. 
t k+p k+p t’ 

FIQURE 6 

However z(k, 7 )  is of order k2 for small k (again this follows from its diagram structure) 

(7) 
so we have finally m 

p - u  = coefficient ofk2inS0- d T e ( k , T ) .  

The lower limit of the integral has to be taken as 0 - to avoid any ambiguity in the 
terms involving 8(7). 

Using the series in figure 4 for 2 in (7) gives an expansion for p - u. The terms are 
most easily evaluated in terms of the Fourier-transformed diagrams. Each line now 
carries a wavenumber, and the total wavenumber is conserved at each vertex(see 
figure 5 ) .  For example, the diagram shown in figure 6 gives a contribution to e ( k ,  t - t ’ )  
equal to 

2 w2 S ~ p S d t l k ~ k ~ f t , ( p , t - t ~ ) e x p  [-p(k+p)2 ( t - t l ) ] 8 ( t - t l )  

x ( -p2) (k + P)2 exp -p(k + P>* (4 - t’>I Wl - 0. 
Picking out the coefficient of kz in this and the other diagrams, we obtain the series 
forp-ua: 

> t > t l > t a >  0 
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The choice of the quantities pz, ,u4, . . . is so far arbitrary except for the condition 

j ~ 5 f , U z + , U 4 +  .-. = K .  

If all the ,un are chosen as zero then ,u = K and the series reduces to the ‘bare’ per- 
turbation series. Alternatively the ,un may be so chosen that all the terms in the 
series for ,u - u vanish. The,uu, are then functions of ,u = u and u is determined implicitly 
by the equation 

This is the renormalized series which we shall use. It is not clear that this procedure 
gives the most rapidly converging sequence of approximations ; however we shall not 
pursue this question further here but simply calculate successive approximations for 
(T by truncating the series at  ,u2, p4 and ,u,. 

u+pz(u)+,u4(u)+... = K .  

3. Calculation of u 
We shall choose the correlation function R so as to make the evaluation of the 

higher-order terms in our series as simple as possible. A separable form is taken for 8: 
f l ( k ,  t )  = (2+/k2)E(k)D( t ) ,  

where E ( k )  gives the energy spectrum of the fluid turbulence. The choice 

E ( k )  = #vt S(k - k,) 

is particularly convenient and has the further advantage that it is one of the spectral 
functions used in Kraichnan’s computer simulations, so providing a check on the u 
value for K = 0. 

ki t 2 )  used by Kraichnan does not lend itself 
readily to the calculation of higher-order terms so we shall take instead 

The time dependence D(t)  = exp ( - 

D(t) = exp ( -  Q / t J ) .  

The two cases considered are: (i) a frozen field given by Q = 0, (ii) 8 time-dependent 
field with 0 = dkovo, where d has the value 0.57835. 

This value of d is chosen since, in the lowest-order approximation, it gives the same 
value for cr as that obtained using Kraichnan’s function D(t) .  If the effective diffusivity 
does not depend too sensitively on the form of D then the higher-order approximations 
should not differ appreciably for the ~ W O  forms of D. 

Up to fourth order the integrals can be calculated analytically and we find 

- V; 
Pz = 

where H(G) denotes the function 

- $ + 45 + 2t2  - (5 + 2) (9 - 1) In [(t + I)/([ - I)]. 
At sixth order there are nineteen diagrams in all, thirteen of which can be calculated 
analytically. The rest were collected together into one multiple integral which was 
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FIGURE 7. Dimensionless plot of effective long-time diffusivity against molecular diffusivity for 
(a) the time-independent and (b)  the time-dependent caae. The numbers 2, 4 and 6 denote the 
second-, fourth- and sixth-order approximations respectively. The broken line shows the values 
which would be obtained if turbulent and molecular diffusion acted independently. 
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analytically reduced to a double integral and evaluated numerically. For more 
realistic correlation functions the evaluation of the terms of the series would involve 
more computation but could still be carried out, at  least up to fourth order. 

The results are shown graphically in figure 7 in terms of the dimensionless quantities 

5 = ~ k o / v o ,  R = K k o / V o .  

The broken line shows the graph which is obtained on the assumption that the 
molecular and turbulent diffusivities are simply additivk. It is seen that the successive 
approximations appear to be converging fairly rapidly especially for the frozen-field 
case. This is useful since the simple approximations previously given for the case 
K = 0 are less accurate for the frozen field. The convergence is also quicker for larger 
values of K as might be expected. The intercepts at  K = 0 for the frozen-field case are 
1 )  1.055 and 1.069 respectively for the second-, fourth- and sixth-order approximations. 
Kraichnan’s computer simulations give a value of 1.1 with a possible error of a few 
per cent. For the time-dependent case the values obtained are 0.752, 0.847 and 0.880 
and Kraichnan’s calculations (which, it will be recalled, use a different time de- 
pendence) give approximately 0.9. The simple approximation mentioned in the 
introduction (Phythian 1975) gives 0.91. 

It is interesting to note that the successive approximations are increasing and 
seem to approach the true value from below, the terms pz, p4 and ,us all being negative. 
We have also examined the second- and fourth-order approximations for a frozen 
field with a different spectral function E ( k )  K k*exp( - 2k2/kg) ( E 2 ( k )  in Kraichnan’s 
notation) and found similar behaviour, the values for K = 0 being 1.15 and 1.28 
compared with an ‘exact’ value of about 1-3 from Kraichnan’s ( 1 9 7 0 ~ )  numerical 
simulation. 

A preliminary investigation of the method applied to the same problem in two 
dimensions is interesting. For the frozen field the second-order approximation gives 
the same result as is obtained in three dimensions, however p4 is now positive and the 
fourth-order equation for c has no real roots. This breakdown of the method is pre- 
sumably due to the trapping of fluid particles into closed orbits in the manner described 
by Kraichnan ( 1 9 7 0 ~ ) .  This would render the assumed asymptotic form of G incorrect. 

4. Conclusion 
The method described seems to provide successive approximations which converge 

fairly quickly and appear to be consistent with what is already known from Kraichnan’s 
results for K = 0. It fully supports Saffman’s view of the destructive interference of the 
molecular and turbulent diffusion processes. At the same time it provides a further 
test of the general philosophy of renormalized perturbation expansions which underlies 
much recent work in turbulence theory and related fields. 

It is not difficult to think of other problems which might be amenable to this 
approach. One possibility is the diffusion of a weak magnetic field in a conducting 
fluid in random motion, where it is known that second-order theories such as direct 
interaction may, in some circumstances, be inadequate (Kraichnan 1976a, b ) .  
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